WHAT IS ENGINEERING CHEMISTRY

Established in 1895, the program is distinguished by the breadth and depth of its offerings in fundamental and applied chemistry, many of these courses having been especially developed for the program. It is accredited by the Canadian Engineering Accreditation Board (CEAB) as a distinct engineering program, and by the Canadian Society for Chemistry (CSC) as a chemistry program. This dual accreditation allows graduates to pursue professional careers in both fields – a unique benefit of an Engineering Chemistry degree.

The curriculum creates Engineers that have a firm grasp of fundamental science as well as the engineering tools needed to put this knowledge into practice. An in-depth understanding of chemical principles makes Engineering Chemists particularly adept at early-stage design, when knowledge of chemical phenomena is needed to create and/or advance new technology. Extensive training in core engineering principles such as fluid mechanics, thermodynamics, and transport phenomena ensure that graduates can contribute equally well to late-stage design efforts involving detailed equipment specifications and financial analyses.

Engineering Chemistry design activities focus on three areas – Electrochemical Energy Systems, Chemical Diagnostics, and Process Synthesis. Students apply knowledge of thermodynamics and electrochemistry to design energy generation, conversion and storage devices. Courses in analytical chemistry and electronics allow students to design instruments that detect compounds in chemical / biological process streams and the environment. Instruction in organic chemistry and reaction engineering are used to scale up chemical syntheses from laboratory amounts to production volumes, and to create environmentally responsible alternatives to existing processes.

WHO EMPLOYS ENGINEERING CHEMISTS?

Companies with interests in the applied chemical and material science realm hire Engineering Chemistry graduates in a wide range of roles, including research and development, consulting, production and marketing. Some specific fields of operation include:

- conventional and alternative energy systems;
- electrochemistry, batteries, electrolysers, fuel cells;
- synthesis of fine chemicals, pharmaceuticals and agrochemicals;
- medical diagnostics and environmental monitoring technology;
- environmental protection and industrial health;
- green chemistry and responsible process (re)design;
- polymer synthesis, formulation and processing;
- food science and technology;
- waste management systems;
- water quality monitoring and protection;
- mineral processing;
- engineering and financial consulting.

NEED MORE INFORMATION?

A summary of the current curriculum is provided on the back of this page. More information about the program and its graduates can be found on the Department of Chemical Engineering website, and by contacting Liann Joanette, Undergraduate Program Assistant (liann.joanette@queensu.ca).
Engineering Chemistry Curriculum

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 209 Analysis of Process Data</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 221 Chemical Processes and Systems</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 270 ChemEtronics</td>
<td>F</td>
<td>3.0</td>
</tr>
<tr>
<td>ENCH 211 Main Group Chemistry</td>
<td>F</td>
<td>4.5</td>
</tr>
<tr>
<td>ENCH 212 Principles of Chemical Reactivity</td>
<td>F</td>
<td>3.75</td>
</tr>
<tr>
<td>MTHE 225 Ordinary Differential Equations</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>APSC 200 Engineering Design & Practice II</td>
<td>W</td>
<td>4.0</td>
</tr>
<tr>
<td>APSC 293 Engineering Communications</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>CHEE 210 Thermodynamics and Energy Conversion</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 222 Process Dynamics and Numerical Methods</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 223 Fluid Mechanics</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>ENCH 222 Methods of Structure Determination</td>
<td>W</td>
<td>3.75</td>
</tr>
<tr>
<td>ENCH 245 Applied Organic Chemistry I</td>
<td>W</td>
<td>4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 311 Fluid Phase and Reaction Equilibria</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 321 Chemical Reaction Engineering</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 330 Heat and Mass Transfer</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 380 Biochemical Engineering</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>ENCH 213 Introduction to Chemical Analysis</td>
<td>F</td>
<td>4.5</td>
</tr>
<tr>
<td>ENCH 312 Transition Metal Chemistry</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 324 Organic Process Development</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 363 Electrochemical Engineering</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 331 Design of Unit Operations</td>
<td>W</td>
<td>4.5</td>
</tr>
<tr>
<td>CHEE 361 Communications, Ethics & Professionalism</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>ENCH 399 Experimental Chemistry II</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>Electives (minimum 3 Credits)</td>
<td>F/W</td>
<td>3.0</td>
</tr>
<tr>
<td>APSC 221 Economics & Business Practices in Engineering</td>
<td>F/W</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 460 Applied Surface and Colloid Science</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>ENCH 313 Quantum Mechanics & Mol. Simulation</td>
<td>F</td>
<td>3.5</td>
</tr>
<tr>
<td>CHEE 471 Chemical Process Design</td>
<td>F+W</td>
<td>7.0</td>
</tr>
<tr>
<td>ENCH 417 Research Project</td>
<td>F+W</td>
<td>9.0</td>
</tr>
<tr>
<td>CHEE 415 Engineering Chemistry Laboratory</td>
<td>F/W</td>
<td>4.0</td>
</tr>
<tr>
<td>CHEE 463 Electrochemical Energy Systems</td>
<td>W</td>
<td>3.5</td>
</tr>
<tr>
<td>Electives (minimum 15 Credits)</td>
<td>F/W</td>
<td>15</td>
</tr>
</tbody>
</table>