Close Search Button

Research Areas

Power Electronics

Joanne Hui in the ePower labThe research in the Power Electronic area at Queen's university covers a broad range of applications, from power transmission (from generator to main distribution transformer), to alternative energy (such as fuel cells, solar power and wind power), to power consumption (such as communication power systems, computer power systems), all the way to power application-specific ICs (PASIC). More than twenty graduate students are working in the Power Electronics Group under the supervision of its four members, Dr. P. Jain, (Canadian Research Chair, IEEE Fellow), Dr. Y.F. Liu, Dr. A. Bakhshai, and Dr. P.C. Sen (IEEE Fellow). The group has the most advanced, state-of-the-art power electronics lab in Canada, known as ePEARL (Energy and Power Electronics Applied Research Lab).


In the high-power area, the group develops medium- and high-power converter topologies, switching techniques, and control schemes that can significantly improved the performance, simplicity, cost, and controllability of power converters for use in the power system industry for reactive power compensation, and renewable energy. In the alternative energy area, the group is focused on the applications of power electronics in distributed energy generation and in grid-connected distributed energy sources, and investigation of maximum power point tracking for grid-connected inverters, as well as performance monitoring, evaluation and modeling of photovoltaic, wind, and hybrid power systems.


In the communication and computer power system area, the group investigates new technologies to improve efficiency in order to both conserve natural resources as well as to meet stringent dynamic response requirements for the latest digital circuits, such as those encountered in different central processing units or even field-programmable gate arrays (FPGAs). Computer systems, including desktops, laptops, servers, and telecom power systems, use a distributed architecture to power their components. While advances in microprocessors place stringent regulation and transient requirements on the converters that power them, the proliferation of computing equipment necessitates efficiency improvements in all converter stages. Research is presently being conducted to meet these requirements by operating at high frequency with lossless switching, to increase switching frequency by using current-source MOSFET drivers through topological improvements, to develop new analog and digital control methods to achieve optimal dynamic performance, and to overhaul the power distribution system itself to reduce the number of converter stages, for example.


In order to meet the power requirements of microprocessors and other integrated circuits (ICs), power application-specific ICs (PASICs) represent the next generation in power conversion. The elimination of discrete components allows high frequency operation, improved performance, and high power density to be achieved. Integration of the power architecture frees up precious board space, maximizing the number of computing functions that can be implemented. In the Power Electronics Group, projects are underway to examine the use of PASICs in both isolated and non-isolated converter architectures to achieve the aforementioned merits. In addition, PASIC-based research paves the way for integrated systems with power on chip to further reduce the cost and complexity of digital systems.


A. Bakhshai

  • High Power Electronics
  • Control Systems
  • FACTs Devices and Application
  • Control Aspects of Computer-Based Derives
  • Harmonic Detection and Active Power Devices

P.K. Jain (Group Coordinator)

  • Design of efficient high frequency power electronics converter systems.
  • High frequency power architectures for ultra high-speed processors.
  • Connector-less power transfer for optical telecommunications systems.
  • Design of Power ASIC's.
  • Applications of power electronics in space, telecommunications and computer systems.

Y.-F. Liu

  • High Efficiency Low Output Voltage Converters
  • PFC Technique Improvements: Higher Performance at Lower Cost
  • Next Generation On-Board Power Modules
  • Computer Aided Design and Manufacture
  • Modern Control Techniques in Electric Motor Drive Systems
  • Modeling, Simulation and DSP Control of Brushless Motors and Switched Reluctance Motors
  • Power Group

P.C. Sen

  • Novel and innovative control techniques for converters, inverters and drives
  • New circuit topology for ZVS and ZCS converters
  • Improved PFC techniques
  • Control techniques for dynamic and steady state robust performance
  • Vector control, variable structure control, sliding mode control and fuzzy logic control
  • Phone: 1-613-533-2942 Email: senp [at]


Visit the ePower website